かねごんの放浪記

アクセスカウンタ

zoom RSS 2017 センター試験 数学U・B 感想と解法速報

<<   作成日時 : 2017/01/19 03:13   >>

なるほど(納得、参考になった、ヘー) ブログ気持玉 8 / トラックバック 0 / コメント 0

 さて、引き続き数学Aの方を書いていきたいと思います。ただ、最近は解説速報早いですね。予備校の東進や城南予備校ではすでに解説が掲載されています。たぶん近々3大予備校でも解説講義など配信するでしょう。障害の自分にはとても追い付けません。まあこちらはいつもの感じでマイペースに感想含め書いていきたいと思います。

数学U・B
 全体的な感想は、見た目難しい。いろんな分野が融合されているのが今年の特徴だと思います。融合問題は両方の知識がないと解けない訳で、これは最近の傾向でもあります。とにかく受験生の皆さんは、知識に穴が無いよう、苦手な分野も最低限の知識・技術は固めておきましょう。

 第1問[1]は三角関数。まず、3つ条件が書いてあります。問題を見た瞬間考えておきたいのは、Aよりどちらかがマイナスということ。α<βより、αが鋭角、βが鈍角というイメージは持っておきたいです。(1)、2倍角の公式と誘導されているので、cos2α=2cos^2α-1の公式を使えば出ます。次に、Aの式を2乗してください。これで和と積が分かりました。そこで、2次方程式の解の性質を使います。x^2-(和)x+(積)=0で計算すると、たすきがけより4/5と1/3と出ます。Bより、cos^2αが4/5、cos^2β=1/3なので、平方根をとって最後の解を求められます。はじめの条件に早めに気づいておくのと、さりげなく2次方程式を使いこなせるかが重要でした。

 第1問[2]は対数関数。見た目はボリュームありますが、内容はそれほどでもないです。無理やり内分の公式・常用対数の計算を絡めたなあという印象です。まず真数条件により、p>0,q>0です。そして内分の公式を使うだけで次の空欄は埋まります。それがCと一致するというので、連立方程式を作ります。全く図のイメージ必要ありません。ただ誘導通り計算します。Dの式変形ですが、1+1/3logp=logqより、log2+1/3logp=logqで、2p^1/3=q、両辺を2で割り3乗するとEができます。Cより、p=3qなので3次方程式を解くと、q=2√6となります。pはその3倍です。最後、このqの近似値を求めろといいますが、与えられているのが常用対数で、ここまで底は2だったので変換する必要があります。log2√6=log2+1/2(log2+log3)と直してから、最後にlog3の値を求めるときに底の変換公式を使ってください。正直この筆算はしんどいです。あまりセンター数Uで、このような小数計算をするのは記憶になく、珍しいと思います。

 第2問は微分積分。接線と微分積分の典型的問題で、しっかり誘導に乗れば解ける問題です。昔と違うのは、微分の出題が多くなっている最近の傾向をまさに踏襲しています。(1)、まず接点tの接線の方程式を作ります。公式だけです。これがPを通るときなので、Pの座標を代入します。tの2次方程式をたすき掛けなどで解いてください。t=2a-1,1となります。これが等しくなるt=1以外は接線は2つあり、t=2a-1とt=1を代入してください。(2)、y切片r>0となるときは、2次不等式を解けばいいです。数Tですね。このとき、△OPRの面積は、底辺がy切片、高さがPのx座標aの三角形なので、求まります。この3次関数Sの増減表を作ります。微分すると、S'=0となるのは0と2/3で、0<a<1より、2/3で極大かつ最大となります。(3)、放物線と接線とx=0,x=aで囲まれた面積ですが、放物線の方が接線より上になるので、定積分計算してください。最近は積分計算は一昔前みたいに重たくなくていいですね。最後、このTの増減を調べる問題が少し悩みます。T'=0を解の公式で解くとa=3±√2/7で、2/3より大きいか小さいか判定しないといけません。通分して判定するのが確実でしょう。結局これはどちらも2/3より小さいので、T'>0となり増加するとなります。最後の問題は昔の数Tでありがちの小数大小比較でした。

 第3問は数列。まあネタ切れ感もありますが、ついに数Uの対数も最後に絡める出題となりました。まあ数Bだけの専用問題ではないのでいいのかもしれません。(1)は楽勝。初項1、公比2だから、3つの数は1,2,4なので、その積は8、和は7です。(2)、初項x、公比rなので@より、x*xr*xr^2=a^3 x,r,aは実数なので、両辺の3乗根を取り、xr=aです。AとBより、a,b,rの関係式を作れと言っています。つまり、xを消去しないといけないので、x=a/rを代入し、r倍すればrの2次式Cが完成します。Cを満たす実数rが存在するので、D≧0を解いてください。Dが作れます。(3)a=64、b=336のとき、Cから2次方程式が作れ、両辺を16で割るとたすき掛けできそうと分かります。r>1より、r=4、x=16です。ここでtn、対数が登場します。snが16*4^n-1=4^n+1で、tnはlogの底と真数が同じことを利用して変形できます。最後その和Unを求めよとあります。いわゆる等差×等比型の数列の和なので、誘導通りUn-4Unから求められますが、この計算が実に面倒です。具体的に書いて引き算していくと、初項と末項以外は係数1、公比4の等比数列の和になります。4^n+2でくくると、マークにあう形になります。最後はかなり面倒なので、実際受験生だったら後回しにすべきでしょう。それ以外は見た目難しいですが、割と点を取りやすい問題だったと思います。


 第4問は平面ベクトルでした。予備校の分析では割と簡単となっていますが、自分はやや難しく感じました。去年の方が解きやすかったような…。(1)正六角形の座標は、Bが第1象限に気をつけて図を書けば分かると思います。(2)交点の位置ベクトルの問題で、誘導されているのでまだ簡単です。AMはBDの中点Mの座標からAの座標を引けば求められ、DCはCの座標を求め、Dの座標を引いてください。指示通り、ベクトルの成分計算すると連立方程式になり、それを解くとsとtが求まり、ONが分かります。問題は(3)、改めて図を書いてください。垂線の交点を求める問題です。これがあまり誘導されてなく、不安でした。EPの成分を求めろとあるので、Eの座標を求め、P(1,a)から引き算すればよいです。これだけからHの座標を求めるとあります。Hのy座標はaなので、x座標を文字で置き、EP⊥CH条件より内積が0になることを利用してください。センター試験のベクトルは必ず内積出題されますからね。最後、OPとOHのなす角θで、cosθ=12/13からaを求めよとあるので、内積の定義式を2通り使うのですが、これはためらう問題です。√の中が4次式になるのですが、√が結果的にはとれます。数Vやった人だとこの因数分解はやったことある人多いはずです。a=±5/12となります。(3)が計算重たすぎるなあと感じました。

数学U専用問題

 第1問と第2問は数学U・Bと共通問題なので省略します。

 第3問は図形と方程式の出題でした。見た目からも過去一番易しい問題だったと思います。(1)直線ABの方程式は公式を使うだけです。(2)2点AB間の距離も、公式だけでしょう。(3)、2点ABを直径とする円Cの方程式ですが、中点(4,6)が中心、(2)より半径5の円なので、あとは円の公式に入れてください。また、Aにおける円の接線ですが、(1)と垂直なので傾きの積が-1を利用すれば出るでしょう。変に接線の公式は使わない方が無難です。(4)から少し難しくなります。△ABPの面積が20となる点Pの軌跡ですが、図をイメージしてください。(2)より底辺が10なので高さが4になればいい、つまり点Pと直線ABの距離が4になればよいので、点と直線の距離の公式を使うと、絶対値の方程式を解いて2通り答が出ます。(5)今求めたAと@の交点は連立方程式を解いてください。Aと円Cの交点も連立方程式、つまりAを代入すると2次方程式になります。たすき掛けで解くと交点が出ます。最後(6)、△ABPの面積が20で、△ABPが直角三角形となるのは、ここまでの図をよく見ましょう。まず点Aが直角となるのは2通り、点Bが直角となるのも2通りあります。点Pが直角となる場合はきちんと検証が必要です。点Pが直角となるときは、ABが直径となる円C上です。つまり、(4)と円Cの交点です。AとCの交点は、(5)でやったように2通りあります。問題は円とy=3/4x-2が交わるかです。連立して2次式の判別式をやればD>0になります。よってこれも2点で交わると分かり計8個となります。自分は計算しましたが、対称性が利用できるかは不明です。いずれにしても、文字があまり絡んでこなく、昨年よりも簡単だったと思われます。

 第4問は複素数と2項定理・相加相乗平均の問題でした。確かに二項定理は今まであまり出題されてなく、出したかったというのだけは伝わってきますが、ストーリー性が全く分からないめんどくさいだけの問題です。(1)と(2)にも関連は全くありません。(1)は4次式の問題。P(x)がまわりくどく書いていますが、要はP(x)=(x^2-2x+3)S(x)です。この式にx=1,2を代入して式を簡単にすればS(1),S(2)が出ます。これをS(x)の式に代入すればmとnの連立方程式になり、S(x)=0は解の公式より解くことができます。整式の除法と解の公式が使えるかという問題です。(2)はかなりめんどいですし、見た目からして煩雑そうです。まずQ(α)を計算せよと言っています。計算のスペースもつらいでしょうが、2次式にこの複素数αを代入して計算してください。実部と虚部に分けるとマーク欄が埋まります。Q(x)=0がαを解にもつことから、先ほどの実部と虚部が0になります。虚部からk=-2cと求まり、それを実部に代入するとlが分かります。一回ここまでの話はおいといてください。さて、二項定理より、α^4を計算しろと言っています。一回単純に4乗を計算してください。パスカルの三角形を知っていれば少しは楽でしょう。また実部虚部分けます。その実部の最小値を二項定理で求めろとあります。c^4+1/c^4≧2√1で最小値2なので、実部の最小値は6を引いて-4です。等号成立条件はc^4=1/c^4、c>0よりc=1です。そのとき、kとlは単純にc=1を代入すれば求められます。数学Uの受験層を考えても、この問題は計算がつらいですし、何もストーリー性がないので実につまらない問題でした。

 ただ全体通してとにかく伝わってくるのは、教科書からまんべんなく出題しようという方針は伝わってきます。センター試験もあと3年という噂ですし、そろそろ根本から裏切る、二項定理とかが数学U・Bの方に出題されてもおかしくありません。もちろん三角関数・指数関数が第1問の可能性は高いでしょうが、数学Uどこからどうきても対応できるよう、傾向に惑わされず来年の受験生は対策しておいてください。

テーマ

関連テーマ 一覧


月別リンク

ブログ気持玉

クリックして気持ちを伝えよう!
ログインしてクリックすれば、自分のブログへのリンクが付きます。
→ログインへ
気持玉数 : 8
なるほど(納得、参考になった、ヘー) なるほど(納得、参考になった、ヘー) なるほど(納得、参考になった、ヘー) なるほど(納得、参考になった、ヘー) なるほど(納得、参考になった、ヘー) なるほど(納得、参考になった、ヘー) なるほど(納得、参考になった、ヘー)
驚いた

トラックバック(0件)

タイトル (本文) ブログ名/日時

トラックバック用URL help


自分のブログにトラックバック記事作成(会員用) help

タイトル
本 文

コメント(0件)

内 容 ニックネーム/日時

コメントする help

ニックネーム
本 文
2017 センター試験 数学U・B 感想と解法速報 かねごんの放浪記/BIGLOBEウェブリブログ
文字サイズ:       閉じる